Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
J Biomol Struct Dyn ; 42(4): 2170-2196, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37070253

RESUMEN

Calcium signaling has been identified as an important phenomenon in a plethora of cellular processes. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ER-residing intracellular calcium (Ca2+) release channels responsible for cell bioenergetics by transferring calcium from the ER to the mitochondria. The recent availability of full-length IP3R channel structure has enabled the researchers to design the IP3 competitive ligands and reveal the channel gating mechanism by elucidating the conformational changes induced by ligands. However, limited knowledge is available for IP3R antagonists and the exact mechanism of action of these antagonists within a tumorigenic environment of a cell. Here in this review a summarized information about the role of IP3R in cell proliferation and apoptosis has been discussed. Moreover, structure and gating mechanism of IP3R in the presence of antagonists have been provided in this review. Additionally, compelling information about ligand-based studies (both agonists and antagonists) has been discussed. The shortcomings of these studies and the challenges toward the design of potent IP3R modulators have also been provided in this review. However, the conformational changes induced by antagonists for channel gating mechanism still display some major drawbacks that need to be addressed. However, the design, synthesis and availability of isoform-specific antagonists is a rather challenging one due to intra-structural similarity within the binding domain of each isoform. HighlightsThe intricate complexity of IP3R's in cellular processes declares them an important target whereby, the recently solved structure depicts the receptor's potential involvement in a complex network of processes spanning from cell proliferation to cell death.Pharmacological inhibition of IP3R attenuates the proliferation or invasiveness of cancers, thus inducing necrotic cell death.Despite significant advancements, there is a tremendous need to design new potential hits to target IP3R, based upon 3D structural features and pharmacophoric patterns.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Calcio , Neoplasias , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Calcio/metabolismo , Señalización del Calcio , Isoformas de Proteínas/metabolismo , Ligandos , Neoplasias/tratamiento farmacológico
2.
Mov Disord ; 39(1): 141-151, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37964426

RESUMEN

BACKGROUND: The ITPR1 gene encodes the inositol 1,4,5-trisphosphate (IP3 ) receptor type 1 (IP3 R1), a critical player in cerebellar intracellular calcium signaling. Pathogenic missense variants in ITPR1 cause congenital spinocerebellar ataxia type 29 (SCA29), Gillespie syndrome (GLSP), and severe pontine/cerebellar hypoplasia. The pathophysiological basis of the different phenotypes is poorly understood. OBJECTIVES: We aimed to identify novel SCA29 and GLSP cases to define core phenotypes, describe the spectrum of missense variation across ITPR1, standardize the ITPR1 variant nomenclature, and investigate disease progression in relation to cerebellar atrophy. METHODS: Cases were identified using next-generation sequencing through the Deciphering Developmental Disorders study, the 100,000 Genomes project, and clinical collaborations. ITPR1 alternative splicing in the human cerebellum was investigated by quantitative polymerase chain reaction. RESULTS: We report the largest, multinational case series of 46 patients with 28 unique ITPR1 missense variants. Variants clustered in functional domains of the protein, especially in the N-terminal IP3 -binding domain, the carbonic anhydrase 8 (CA8)-binding region, and the C-terminal transmembrane channel domain. Variants outside these domains were of questionable clinical significance. Standardized transcript annotation, based on our ITPR1 transcript expression data, greatly facilitated analysis. Genotype-phenotype associations were highly variable. Importantly, while cerebellar atrophy was common, cerebellar volume loss did not correlate with symptom progression. CONCLUSIONS: This dataset represents the largest cohort of patients with ITPR1 missense variants, expanding the clinical spectrum of SCA29 and GLSP. Standardized transcript annotation is essential for future reporting. Our findings will aid in diagnostic interpretation in the clinic and guide selection of variants for preclinical studies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Aniridia , Anhidrasas Carbónicas , Ataxia Cerebelosa , Discapacidad Intelectual , Trastornos del Movimiento , Degeneraciones Espinocerebelosas , Humanos , Ataxia Cerebelosa/genética , Mutación Missense/genética , Trastornos del Movimiento/complicaciones , Atrofia , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
3.
Biochim Biophys Acta Mol Cell Res ; 1869(4): 119206, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35026348

RESUMEN

Pyruvate kinase isoform M2 (PKM2) is a rate-limiting glycolytic enzyme that is widely expressed in embryonic tissues. The expression of PKM2 declines in some tissues following embryogenesis, while other pyruvate kinase isozymes are upregulated. However, PKM2 is highly expressed in cancer cells and is believed to play a role in supporting anabolic processes during tumour formation. In this study, PKM2 was identified as an inositol 1,4,5-trisphosphate receptor (IP3R)-interacting protein by mass spectrometry. The PKM2:IP3R interaction was further characterized by pull-down and co-immunoprecipitation assays, which showed that PKM2 interacted with all three IP3R isoforms. Moreover, fluorescence microscopy indicated that both IP3R and PKM2 localized at the endoplasmic reticulum. PKM2 binds to IP3R at a highly conserved 21-amino acid site (corresponding to amino acids 2078-2098 in mouse type 1 IP3R isoform). Synthetic peptides (denoted 'TAT-D5SD' and 'D5SD'), based on the amino acid sequence at this site, disrupted the PKM2:IP3R interaction and potentiated IP3R-mediated Ca2+ release both in intact cells (TAT-D5SD peptide) and in a unidirectional 45Ca2+ flux assay on permeabilized cells (D5SD peptide). The TAT-D5SD peptide did not affect the enzymatic activity of PKM2. Reducing PKM2 protein expression using siRNA increased IP3R-mediated Ca2+ signalling in intact cells without altering the ER Ca2+ content. These data identify PKM2 as an IP3R-interacting protein that inhibits intracellular Ca2+ signalling. The elevated expression of PKM2 in cancer cells is therefore not solely connected to its canonical role in glycolytic metabolism, rather PKM2 also has a novel non-canonical role in regulating intracellular signalling.


Asunto(s)
Señalización del Calcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Piruvato Quinasa/metabolismo , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Línea Celular , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Linfocitos/citología , Linfocitos/metabolismo , Ratones , Unión Proteica , Dominios Proteicos , Isoformas de Proteínas/metabolismo , Piruvato Quinasa/antagonistas & inhibidores , Piruvato Quinasa/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35022238

RESUMEN

Stromal interaction molecules, STIM1 and STIM2, sense decreases in the endoplasmic reticulum (ER) [Ca2+] ([Ca2+]ER) and cluster in ER-plasma membrane (ER-PM) junctions where they recruit and activate Orai1. While STIM1 responds when [Ca2+]ER is relatively low, STIM2 displays constitutive clustering in the junctions and is suggested to regulate basal Ca2+ entry. The cellular cues that determine STIM2 clustering under basal conditions is not known. By using gene editing to fluorescently tag endogenous STIM2, we report that endogenous STIM2 is constitutively localized in mobile and immobile clusters. The latter associate with ER-PM junctions and recruit Orai1 under basal conditions. Agonist stimulation increases immobile STIM2 clusters, which coordinate recruitment of Orai1 and STIM1 to the junctions. Extended synaptotagmin (E-Syt)2/3 are required for forming the ER-PM junctions, but are not sufficient for STIM2 clustering. Importantly, inositol 1,4,5-triphosphate receptor (IP3R) function and local [Ca2+]ER are the main drivers of immobile STIM2 clusters. Enhancing, or decreasing, IP3R function at ambient [IP3] causes corresponding increase, or attenuation, of immobile STIM2 clusters. We show that immobile STIM2 clusters denote decreases in local [Ca2+]ER mediated by IP3R that is sensed by the STIM2 N terminus. Finally, under basal conditions, ambient PIP2-PLC activity of the cell determines IP3R function, immobilization of STIM2, and basal Ca2+ entry while agonist stimulation augments these processes. Together, our findings reveal that immobilization of STIM2 clusters within ER-PM junctions, a first response to ER-Ca2+ store depletion, is facilitated by the juxtaposition of IP3R and marks a checkpoint for initiation of Ca2+ entry.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Molécula de Interacción Estromal 2/química , Molécula de Interacción Estromal 2/metabolismo , Calcio/metabolismo , Señalización del Calcio/fisiología , Membrana Celular/metabolismo , Análisis por Conglomerados , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Proteínas de Neoplasias , Molécula de Interacción Estromal 1 , Molécula de Interacción Estromal 2/genética
5.
Biochim Biophys Acta Mol Cell Res ; 1868(12): 119121, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34400171

RESUMEN

Recently, a functional IP3R ortholog (CO.IP3R-A) capable of IP3-induced Ca2+ release has been discovered in Capsaspora owczarzaki, a close unicellular relative to Metazoa. In contrast to mammalian IP3Rs, CO.IP3R-A is not modulated by Ca2+, ATP or PKA. Protein-sequence analysis revealed that CO.IP3R-A contained a putative binding site for anti-apoptotic Bcl-2, although Bcl-2 was not detected in Capsaspora owczarzaki and only appeared in Metazoa. Here, we examined whether human Bcl-2 could form a complex with CO.IP3R-A channels and modulate their Ca2+-flux properties using ectopic expression approaches in a HEK293 cell model in which all three IP3R isoforms were knocked out. We demonstrate that human Bcl-2 via its BH4 domain could functionally interact with CO.IP3R-A, thereby suppressing Ca2+ flux through CO.IP3R-A channels. The BH4 domain of Bcl-2 was sufficient for interaction with CO.IP3R-A channels. Moreover, mutating the Lys17 of Bcl-2's BH4 domain, the residue critical for Bcl-2-dependent modulation of mammalian IP3Rs, abrogated Bcl-2's ability to bind and inhibit CO.IP3R-A channels. Hence, this raises the possibility that a unicellular ancestor of animals already had an IP3R that harbored a Bcl-2-binding site. Bcl-2 proteins may have evolved as controllers of IP3R function by exploiting this pre-existing site, thereby counteracting Ca2+-dependent apoptosis.


Asunto(s)
Señalización del Calcio , Evolución Molecular , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Filogenia , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Homología de Secuencia
6.
Biomolecules ; 11(7)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34356655

RESUMEN

Calcium (Ca2+) homeostasis is vital for insect development and metabolism, and the endoplasmic reticulum (ER) is a major intracellular reservoir for Ca2+. The inositol 1,4,5- triphosphate receptor (IP3R) and ryanodine receptor (RyR) are large homotetrameric channels associated with the ER and serve as two major actors in ER-derived Ca2+ supply. Most of the knowledge on these receptors derives from mammalian systems that possess three genes for each receptor. These studies have inspired work on synonymous receptors in insects, which encode a single IP3R and RyR. In the current review, we focus on a fundamental, common question: "why do insect cells possess two Ca2+ channel receptors in the ER?". Through a comparative approach, this review covers the discovery of RyRs and IP3Rs, examines their structures/functions, the pathways that they interact with, and their potential as target sites in pest control. Although insects RyRs and IP3Rs share structural similarities, they are phylogenetically distinct, have their own structural organization, regulatory mechanisms, and expression patterns, which explains their functional distinction. Nevertheless, both have great potential as target sites in pest control, with RyRs currently being targeted by commercial insecticide, the diamides.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas de Insectos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Señalización del Calcio , Control de Insectos , Proteínas de Insectos/química , Insectos/fisiología , Resistencia a los Insecticidas , Metabolismo de los Lípidos , Mamíferos/metabolismo
7.
Am J Med Genet A ; 185(8): 2315-2324, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33949769

RESUMEN

Gillespie syndrome (GLSP) is characterized by bilateral symmetric partial aplasia of the iris presenting as a fixed and large pupil, cerebellar hypoplasia with ataxia, congenital hypotonia, and varying levels of intellectual disability. GLSP is caused by either biallelic or heterozygous, dominant-negative, pathogenic variants in ITPR1. Here, we present a 5-year-old male with GLSP who was found to have a heterozygous, de novo intronic variant in ITPR1 (NM_001168272.1:c.5935-17G > A) through genome sequencing (GS). Sanger sequencing of cDNA from this individual's fibroblasts showed the retention of 15 nucleotides from intron 45, which is predicted to cause an in-frame insertion of five amino acids near the C-terminal transmembrane domain of ITPR1. In addition, qPCR and cDNA sequencing demonstrated reduced expression of both ITPR1 alleles in fibroblasts when compared to parental samples. Given the close proximity of the predicted in-frame amino acid insertion to the site of previously described heterozygous, de novo, dominant-negative, pathogenic variants in GLSP, we predict that this variant also has a dominant-negative effect on ITPR1 channel function. Overall, this is the first report of a de novo intronic variant causing GLSP, which emphasizes the utility of GS and cDNA studies for diagnosing patients with a clinical presentation of GLSP and negative clinical exome sequencing.


Asunto(s)
Aniridia/diagnóstico , Aniridia/genética , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Receptores de Inositol 1,4,5-Trifosfato/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Intrones , Mutación , Alelos , Preescolar , Análisis Mutacional de ADN , Facies , Estudios de Asociación Genética/métodos , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Imagen por Resonancia Magnética , Masculino , Fenotipo , Evaluación de Síntomas , Secuenciación Completa del Genoma
8.
Biochem Biophys Res Commun ; 553: 180-186, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33773141

RESUMEN

Bcl-2-related ovarian killer (Bok) binds tightly to inositol 1,4,5-trisphosphate receptors (IP3Rs). To better understand this interaction, we sought to elucidate the Bok binding determinants in IP3R1, focusing on the ∼75 amino acid loop (residues 1882-1957) between α helices 72 and 73. Bioinformatic analysis revealed that the majority of this loop is intrinsically disordered, with two flanking regions of high disorder next to a low disorder central region (∼residues 1914-1926) that is predicted to contain two fused, disjointed transient helical elements. Experiments with IP3R1 mutants, combined with computational analysis, indicated that small deletions in this central region block Bok binding due to perturbation of the helical elements. Studies in vitro with purified Bok and IP3R1-derived peptides revealed high affinity binding to amino acids 1898-1940 of IP3R1 (Kd ∼65 nM) and that binding affinity is also dependent upon both of the high disorder flanking regions. The strength of the Bok-IP3R1 interaction was demonstrated by the ability of IP3R1 or Bok to recruit transmembrane domain-free Bok or IP3R1 mutants, respectively, to membranes in intact cells, and that these two mutants can bind in the cytosol independently of membrane association. Overall, we show that Bok binding to IP3R1 occurs within a largely disordered loop between α helices 72 and 73 and that high affinity binding is mediated by multivalent interactions.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sitios de Unión/genética , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Modelos Moleculares , Terapia Molecular Dirigida , Unión Proteica/genética , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas c-bcl-2/química , Eliminación de Secuencia
9.
Biomolecules ; 11(2)2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494474

RESUMEN

Recent evidence suggests that the reason Extra Virgin Olive Oil (EVOO) lowers blood pressure and reduces the risk of developing hypertension is partly due to minor components of EVOO, such as phenols. However, little is still known about the mechanism(s) through which EVOO phenols mediate anti-hypertensive effects. The aim of the present study was to investigate the mechanisms of action of EVOO phenols on mesenteric resistance arteries. A pressure myograph was used to test the effect of EVOO phenols on isolated mesenteric arteries in the presence of specific inhibitors of: 1) BKca channels (Paxillin, 10-5 M); 2) L-type calcium channels (Verapamil, 10-5 M); 3) Ryanodine receptor, RyR (Ryanodine, 10-5 M); 4) inositol 1,4,5-triphosphate receptor, IP3R, (2-Aminoethyl diphenylborinate, 2-APB, 3 × 10-3 M); 5) phospholipase C, PLC, (U73122, 10-5 M), and 6) GPCR-Gαi signaling, (Pertussis Toxin, 10-5 M). EVOO phenols induced vasodilation of mesenteric arteries in a dose-dependent manner, and this effect was reduced by pre-incubation with Paxillin, Verapamil, Ryanodine, 2-APB, U73122, and Pertussis Toxin. Our data suggest that EVOO phenol-mediated vasodilation requires activation of BKca channels potentially through a local increase of subcellular calcium microdomains, a pivotal mechanism on the base of artery vasodilation. These findings provide novel mechanistic insights for understanding the vasodilatory properties of EVOO phenols on resistance arteries.


Asunto(s)
Microdominios de Membrana/química , Arterias Mesentéricas/efectos de los fármacos , Aceite de Oliva/química , Canales de Potasio/química , Fosfolipasas de Tipo C/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Compuestos de Boro/farmacología , Canales de Calcio/química , Estrenos/farmacología , Receptores de Inositol 1,4,5-Trifosfato/química , Masculino , Paxillin/farmacología , Toxina del Pertussis/farmacología , Fenol/química , Fenoles/farmacología , Pirrolidinonas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Rianodina/farmacología , Canal Liberador de Calcio Receptor de Rianodina/química , Vasodilatación/efectos de los fármacos , Verapamilo/farmacología
10.
Int J Mol Sci ; 21(23)2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33276427

RESUMEN

As a second messenger in cellular signal transduction, calcium signaling extensively participates in various physiological activities, including spermatogenesis and the regulation of sperm function. Abnormal calcium signaling is highly correlated with male infertility. Calcium signaling is mainly regulated by both extracellular calcium influx and the release of calcium stores. Inositol 1,4,5-trisphosphate receptor (IP3R) is a widely expressed channel for calcium stores. After being activated by inositol 1,4,5-trisphosphate (IP3) and calcium signaling at a lower concentration, IP3R can regulate the release of Ca2+ from stores into cytoplasm, and eventually trigger downstream events. The closure of the IP3R channel caused by a rise in intracellular calcium signals and the activation of the calcium pump jointly restores the calcium store to a normal level. In this review, we aim to discuss structural features of IP3R channels and the underlying mechanism of IP3R channel-mediated calcium signaling and further focus on the research progress of IP3R expression and function in the male reproductive system. Finally, we propose key directions and strategies for research of IP3R in spermatogenesis and the regulation of sperm function to provide more understanding of the function and mechanism of IP3R channel actions in male reproduction.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Reproducción/fisiología , Animales , Calcio/metabolismo , Señalización del Calcio , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Humanos , Infertilidad Masculina/etiología , Infertilidad Masculina/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Factores Sexuales , Transducción de Señal , Espermatogénesis/genética , Espermatozoides/fisiología , Relación Estructura-Actividad
11.
Cell Calcium ; 92: 102284, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32947181

RESUMEN

In contrast to animal cells, the inositol 1,4,5-trisphosphate receptor of Trypanosoma cruzi (TcIP3R) localizes to acidocalcisomes instead of the endoplasmic reticulum. Here, we present evidence that TcIP3R is a Ca2+ release channel gated by IP3 when expressed in DT40 cells knockout for all vertebrate IP3 receptors, and is required for Ca2+ uptake by T. cruzi mitochondria, regulating pyruvate dehydrogenase dephosphorylation and mitochondrial O2 consumption, and preventing autophagy. Localization studies revealed its co-localization with an acidocalcisome marker in all life cycle stages of the parasite. Ablation of TcIP3R by CRISPR/Cas9 genome editing caused: a) a reduction in O2 consumption rate and citrate synthase activity; b) decreased mitochondrial Ca2+ transport without affecting the membrane potential; c) increased ammonia production and AMP/ATP ratio; d) stimulation of autophagosome formation, and e) marked defects in growth of culture forms (epimastigotes) and invasion of host cells by infective stages (trypomastigotes). Moreover, TcIP3R overexpressing parasites showed decreased metacyclogenesis, trypomastigote host cell invasion and intracellular amastigote replication. In conclusion, the results suggest a modulatory activity of TcIP3R-mediated acidocalcisome Ca2+ release on cell bioenergetics in T. cruzi.


Asunto(s)
Autofagia , Calcio/metabolismo , Metabolismo Energético , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocondrias/metabolismo , Trypanosoma cruzi/metabolismo , Animales , Autofagia/efectos de los fármacos , Pollos , Chlorocebus aethiops , Metabolismo Energético/efectos de los fármacos , Inositol 1,4,5-Trifosfato/farmacología , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Estadios del Ciclo de Vida/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mutación/genética , Fenotipo , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/crecimiento & desarrollo , Células Vero
12.
Int J Mol Sci ; 21(8)2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316137

RESUMEN

Human carbonic anhydrase 8 (CA-VIII) is an acatalytic isoform of the α -CA family. Though the protein cannot hydrate CO2, CA-VIII is essential for calcium (Ca2+) homeostasis within the body, and achieves this by allosterically inhibiting the binding of inositol 1,4,5-triphosphate (IP3) to the IP3 receptor type 1 (ITPR1) protein. However, the mechanism of interaction of CA-VIII to ITPR1 is not well understood. In addition, functional defects to CA-VIII due to non-synonymous single nucleotide polymorphisms (nsSNVs) result in Ca2+ dysregulation and the development of the phenotypes such as cerebellar ataxia, mental retardation and disequilibrium syndrome 3 (CAMRQ3). The pathogenesis of CAMRQ3 is also not well understood. The structure and function of CA-VIII was characterised, and pathogenesis of CAMRQ3 investigated. Structural and functional characterisation of CA-VIII was conducted through SiteMap and CPORT to identify potential binding site residues. The effects of four pathogenic nsSNVs, S100A, S100P, G162R and R237Q, and two benign S100L and E109D variants on CA-VIII structure and function was then investigated using molecular dynamics (MD) simulations, dynamic cross correlation (DCC) and dynamic residue network (DRN) analysis. SiteMap and CPORT analyses identified 38 unique CA-VIII residues that could potentially bind to ITPR1. MD analysis revealed less conformational sampling within the variant proteins and highlighted potential increases to variant protein rigidity. Dynamic cross correlation (DCC) showed that wild-type (WT) protein residue motion is predominately anti-correlated, with variant proteins showing no correlation to greater residue correlation. DRN revealed variant-associated increases to the accessibility of the N-terminal binding site residues, which could have implications for associations with ITPR1, and further highlighted differences to the mechanism of benign and pathogenic variants. SNV presence is associated with a reduction to the usage of Trp37 in all variants, which has implications for CA-VIII stability. The differences to variant mechanisms can be further investigated to understand pathogenesis of CAMRQ3, enhancing precision medicine-related studies into CA-VIII.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Sitios de Unión , Biomarcadores de Tumor/química , Biomarcadores de Tumor/genética , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/patología , Bases de Datos Genéticas , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Simulación de Dinámica Molecular , Mutación Missense , Polimorfismo de Nucleótido Simple , Unión Proteica , Mapas de Interacción de Proteínas , Estabilidad Proteica , Estructura Terciaria de Proteína
13.
J Med Chem ; 63(10): 5442-5457, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32286062

RESUMEN

Chiral sugar derivatives are potential cyclitol surrogates of the Ca2+-mobilizing intracellular messenger d-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. Six novel polyphosphorylated analogues derived from both d- and l-glucose were synthesized. Binding to Ins(1,4,5)P3 receptors [Ins(1,4,5)P3R] and the ability to release Ca2+ from intracellular stores via type 1 Ins(1,4,5)P3Rs were investigated. ß-d-Glucopyranosyl 1,3,4-tris-phosphate, with similar phosphate regiochemistry and stereochemistry to Ins(1,4,5)P3, and α-d-glucopyranosyl 1,3,4-tris-phosphate are full agonists, being equipotent and 23-fold less potent than Ins(1,4,5)P3, respectively, in Ca2+-release assays and similar to Ins(1,4,5)P3 and 15-fold weaker in binding assays. They can be viewed as truncated analogues of adenophostin A and refine understanding of structure-activity relationships for this Ins(1,4,5)P3R agonist. l-Glucose-derived ligands, methyl α-l-glucopyranoside 2,3,6-trisphosphate and methyl α-l-glucopyranoside 2,4,6-trisphosphate, are also active, while their corresponding d-enantiomers, methyl α-d-glucopyranoside 2,3,6-trisphosphate and methyl α-d-glucopyranoside 2,4,6-trisphosphate, are inactive. Interestingly, both l-glucose-derived ligands are partial agonists: they are among the least efficacious agonists of Ins(1,4,5)P3R yet identified, providing new leads for antagonist development.


Asunto(s)
Agonismo Parcial de Drogas , Glucosa/química , Receptores de Inositol 1,4,5-Trifosfato/agonistas , Receptores de Inositol 1,4,5-Trifosfato/química , Inositol 1,4,5-Trifosfato/química , Imitación Molecular/efectos de los fármacos , Polifosfatos/química , Animales , Relación Dosis-Respuesta a Droga , Glucosa/farmacología , Células HEK293 , Humanos , Inositol 1,4,5-Trifosfato/farmacología , Simulación del Acoplamiento Molecular/métodos , Imitación Molecular/fisiología , Polifosfatos/farmacología , Estructura Secundaria de Proteína , Ratas , Ratas Wistar
14.
J Biol Chem ; 295(6): 1743-1753, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31915246

RESUMEN

Calcium-mediated signaling through inositol 1,4,5-triphosphate receptors (IP3Rs) is essential for the regulation of numerous physiological processes, including fertilization, muscle contraction, apoptosis, secretion, and synaptic plasticity. Deregulation of IP3Rs leads to pathological calcium signaling and is implicated in many common diseases, including cancer and neurodegenerative, autoimmune, and metabolic diseases. Revealing the mechanism of activation and inhibition of this ion channel will be critical to an improved understanding of the biological processes that are controlled by IP3Rs. Here, we report structural findings of the human type-3 IP3R (IP3R-3) obtained by cryo-EM (at an overall resolution of 3.8 Å), revealing an unanticipated regulatory mechanism where a loop distantly located in the primary sequence occupies the IP3-binding site and competitively inhibits IP3 binding. We propose that this inhibitory mechanism must differ qualitatively among IP3R subtypes because of their diverse loop sequences, potentially serving as a key molecular determinant of subtype-specific calcium signaling in IP3Rs. In summary, our structural characterization of human IP3R-3 provides critical insights into the mechanistic function of IP3Rs and into subtype-specific regulation of these important calcium-regulatory channels.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Péptidos/metabolismo , Sitios de Unión , Señalización del Calcio , Microscopía por Crioelectrón , Humanos , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inhibidores , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/ultraestructura , Modelos Moleculares , Conformación Proteica
15.
Methods Mol Biol ; 2091: 137-144, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31773577

RESUMEN

We present a novel method, termed competitive fluorescent ligand assay for inositol 1,4,5-trisphosphate (CFLA-IP3), to measure inositol 1,4,5-trisphosphate (IP3). This method is based on fluorescence resonance energy transfer (FRET) between two fluorescent molecules, a fluorescent IP3-binding protein and its fluorescent ligand. Binding of these fluorescent molecules generates a FRET signal, and the IP3-dependent decrease in the FRET signal due to displacement of the fluorescent ligand is detected by fluorescence microscopy.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/análisis , Animales , Células COS , Chlorocebus aethiops , Transferencia Resonante de Energía de Fluorescencia , Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/química , Ligandos , Microscopía Fluorescente , Ratas
16.
Adv Exp Med Biol ; 1131: 243-270, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31646513

RESUMEN

The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a Ca2+-release channel mainly located in the endoplasmic reticulum (ER). Three IP3R isoforms are responsible for the generation of intracellular Ca2+ signals that may spread across the entire cell or occur locally in so-called microdomains. Because of their ubiquitous expression, these channels are involved in the regulation of a plethora of cellular processes, including cell survival and cell death. To exert their proper function a fine regulation of their activity is of paramount importance. In this review, we will highlight the recent advances in the structural analysis of the IP3R and try to link these data with the newest information concerning IP3R activation and regulation. A special focus of this review will be directed towards the regulation of the IP3R by protein-protein interaction. Especially the protein family formed by calmodulin and related Ca2+-binding proteins and the pro- and anti-apoptotic/autophagic Bcl-2-family members will be highlighted. Finally, recently identified and novel IP3R regulatory proteins will be discussed. A number of these interactions are involved in cancer development, illustrating the potential importance of modulating IP3R-mediated Ca2+ signaling in cancer treatment.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Receptores de Inositol 1,4,5-Trifosfato , Señalización del Calcio , Supervivencia Celular/genética , Retículo Endoplásmico/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
17.
J Biol Chem ; 294(27): 10628-10637, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31138655

RESUMEN

Acidocalcisomes are acidic calcium stores rich in polyphosphate (polyP) and are present in trypanosomes and also in a diverse range of other organisms. Ca2+ is released from these organelles through a channel, inositol 1,4,5-trisphosphate receptor (TbIP3R), which is essential for growth and infectivity of the parasite Trypanosoma brucei However, the mechanism by which TbIP3R controls Ca2+ release is unclear. In this work, we expressed TbIP3R in a chicken B lymphocyte cell line in which the genes for all three vertebrate IP3Rs were stably ablated (DT40-3KO). We show that IP3-mediated Ca2+ release depends on Ca2+ but not on ATP concentration and is inhibited by heparin, caffeine, and 2-aminomethoxydiphenyl borate (2-APB). Excised patch clamp recordings from nuclear membranes of DT40 cells expressing only TbIP3R disclosed that luminal inorganic orthophosphate (Pi) or pyrophosphate (PPi), and neutral or alkaline pH can stimulate IP3-generated currents. In contrast, polyP or acidic pH did not induce these currents, and nuclear membranes obtained from cells expressing rat IP3R were unresponsive to polyP or its hydrolysis products. Our results are consistent with the notion that polyP hydrolysis products within acidocalcisomes or alkalinization of their luminal pH activate TbIP3R and Ca2+ release. We conclude that TbIP3R is well-adapted to its role as the major Ca2+ release channel of acidocalcisomes in T. brucei.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Polifosfatos/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Línea Celular , Pollos , Concentración de Iones de Hidrógeno , Hidrólisis , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Técnicas de Placa-Clamp , Proteínas Protozoarias/química , Proteínas Protozoarias/genética
18.
Cell Mol Life Sci ; 76(19): 3843-3859, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30989245

RESUMEN

Bcl-2 proteins have emerged as critical regulators of intracellular Ca2+ dynamics by directly targeting and inhibiting the IP3 receptor (IP3R), a major intracellular Ca2+-release channel. Here, we demonstrate that such inhibition occurs under conditions of basal, but not high IP3R activity, since overexpressed and purified Bcl-2 (or its BH4 domain) can inhibit IP3R function provoked by low concentration of agonist or IP3, while fails to attenuate against high concentration of agonist or IP3. Surprisingly, Bcl-2 remained capable of inhibiting IP3R1 channels lacking the residues encompassing the previously identified Bcl-2-binding site (a.a. 1380-1408) located in the ARM2 domain, part of the modulatory region. Using a plethora of computational, biochemical and biophysical methods, we demonstrate that Bcl-2 and more particularly its BH4 domain bind to the ligand-binding domain (LBD) of IP3R1. In line with this finding, the interaction between the LBD and Bcl-2 (or its BH4 domain) was sensitive to IP3 and adenophostin A, ligands of the IP3R. Vice versa, the BH4 domain of Bcl-2 counteracted the binding of IP3 to the LBD. Collectively, our work reveals a novel mechanism by which Bcl-2 influences IP3R activity at the level of the LBD. This allows for exquisite modulation of Bcl-2's inhibitory properties on IP3Rs that is tunable to the level of IP3 signaling in cells.


Asunto(s)
Señalización del Calcio , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inhibidores , Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Secuencia de Aminoácidos , Animales , Unión Competitiva , Células COS , Células Cultivadas , Chlorocebus aethiops , Receptores de Inositol 1,4,5-Trifosfato/agonistas , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Ligandos , Ratones , Simulación del Acoplamiento Molecular , Dominios Proteicos , Proteínas Proto-Oncogénicas c-bcl-2/química , Eliminación de Secuencia
19.
Sci Rep ; 9(1): 2454, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30792485

RESUMEN

Inositol 1, 4, 5-trisphosphate (IP3) binding at the N-terminus (NT) of IP3 receptor (IP3R) allosterically triggers the opening of a Ca2+-conducting pore located ~100 Å away from the IP3-binding core (IBC). However, the precise mechanism of IP3 binding and correlated domain dynamics in the NT that are central to the IP3R activation, remains unknown. Our all-atom molecular dynamics (MD) simulations recapitulate the characteristic twist motion of the suppressor domain (SD) and reveal correlated 'clam closure' dynamics of IBC with IP3-binding, complementing existing suggestions on IP3R activation mechanism. Our study further reveals the existence of inter-domain dynamic correlation in the NT and establishes the SD to be critical for the conformational dynamics of IBC. Also, a tripartite interaction involving Glu283-Arg54-Asp444 at the SD - IBC interface seemed critical for IP3R activation. Intriguingly, during the sub-microsecond long simulation, we observed Arg269 undergoing an SD-dependent flipping of hydrogen bonding between the first and fifth phosphate groups of IP3. This seems to play a major role in determining the IP3 binding affinity of IBC in the presence/absence of the SD. Our study thus provides atomistic details of early molecular events occurring within the NT during and following IP3 binding that lead to channel gating.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Regulación Alostérica , Animales , Calcio/metabolismo , Enlace de Hidrógeno , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica
20.
Artículo en Inglés | MEDLINE | ID: mdl-30745293

RESUMEN

Inositol 1,4,5-trisphosphate receptors (IP3Rs), by releasing Ca2+ from the endoplasmic reticulum (ER) of animal cells, allow Ca2+ to be redistributed from the ER to the cytosol or other organelles, and they initiate store-operated Ca2+ entry (SOCE). For all three IP3R subtypes, binding of IP3 primes them to bind Ca2+, which then triggers channel opening. We are now close to understanding the structural basis of IP3R activation. Ca2+-induced Ca2+ release regulated by IP3 allows IP3Rs to regeneratively propagate Ca2+ signals. The smallest of these regenerative events is a Ca2+ puff, which arises from the nearly simultaneous opening of a small cluster of IP3Rs. Ca2+ puffs are the basic building blocks for all IP3-evoked Ca2+ signals, but only some IP3 clusters, namely those parked alongside the ER-plasma membrane junctions where SOCE occurs, are licensed to respond. The location of these licensed IP3Rs may allow them to selectively regulate SOCE.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Calcio/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Transducción de Señal , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA